The Influence of Lyophilized EmuGel Silica Microspheres on the Physicomechanical Properties, In Vitro Bioactivity and Biodegradation of a Novel Ciprofloxacin-Loaded PCL/PAA Scaffold
نویسندگان
چکیده
A new composite poly(caprolactone) (PCL) and poly(acrylic acid) (PAA) (PCL:PAA 1:5) scaffold was synthesized via dispersion of PCL particles into a PAA network. Silica microspheres (Si) (2–12 μm) were then prepared by a lyophilized micro-emulsion/sol-gel (Emugel) system using varying weight ratios. The model drug ciprofloxacin (CFX) was used for in situ incorporation into the scaffold. The physicochemical and thermal integrity, morphology and porosity of the system was analyzed by X-Ray Diffraction (XRD), Attenuated Total Refelctance Fourier Transform Infrared (ATR-FTIR), Differential Scanning Calorimetry (DSC), SEM, surface area analysis and liquid displacement, respectively. The mechanical properties of the scaffold were measured by textural analysis and in vitro bioactivity, biodegradation and pH variations were evaluated by XRD, FTIR and SEM after immersion in Simulated Body Fluid (SBF). The in vitro and in vivo studies of the prepared scaffold were considered as future aspects for this study. CFX release was determined in phosphate buffer saline (PBS) (pH 7.4; 37 ̋C). The incorporation of the Si microspheres and CFX into the scaffold was confirmed by XRD, FTIR, DSC and SEM, and the scaffold microstructure was dependent on the concentration of Si microspheres and the presence of CFX. The system displayed enhanced mechanical properties (4.5–14.73 MPa), in vitro bioactivity, biodegradation and controlled CFX release. Therefore, the PCL/PAA scaffolds loaded with Si microspheres and CFX with a porosity of up to 87% may be promising for bone tissue engineering.
منابع مشابه
Effect of hydroxyapatite-containing microspheres embedded into three-dimensional magnesium phosphate scaffolds on the controlled release of lysozyme and in vitro biodegradation
The functionality of porous three-dimensional (3D) magnesium phosphate (MgP) scaffold was investigated for the development of a novel protein delivery system and biomimetic bone tissue engineering scaffold. This enhancement can be achieved by incorporation of hydroxyapatite (HA)-containing polymeric microspheres (MSs) into a bulk MgP matrix, and a paste-extruding deposition (PED) system. In thi...
متن کاملBiodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants
INTRODUCTION In recent years there has been a steep increase in the number of orthopedic patients for many reasons. One major reason is osteomyelitis, caused by pyrogenic bacteria, with progressive infection of the bone or bone marrow and surrounding tissues. So antibiotics must be introduced during bone implantation to avoid prolonged infection. AIM The objective of the study reported here w...
متن کاملThe controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold
In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...
متن کاملThe controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold
In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...
متن کاملPreparation and characterization of hydroxyapatite reinforced with hardystonite as a novel bio-nanocomposite for tissue engineering
Objecttive(s): Despite the poor mechanical properties of hydroxyapatite, its unique biological properties leads we think about study on improving its properties rather than completely replacing it with other biomaterials. Accordingly, in this study we introduced hydroxyapatite reinforced with hardystonite as a novel bio-nanocompositeand evaluate its in-vitro bioactivity with the aim of developi...
متن کامل